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Observation of robust quantum resonance peaks in an atom optics kicked rotor
with amplitude noise
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The effect of pulse train noise on the quantum resonance peaks of the atom optics kicked rotor is investi-
gated experimentally. Quantum resonance peaks in the late time mean energy of the atoms are found to be
surprisingly robust against all levels of noise applied to the kicking amplitude, while even small levels of noise
on the kicking period lead to their destruction. The robustness to amplitude noise of the resonance peak and of
the fall-off in mean energy to either side of this peak are explained in terms of the occurrence of estable,
classical dynamic$S. Wimberger, I. Guarneri, and S. Fishman, Nonlineafiy 1381 (2003] around each
guantum resonance.
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[. INTRODUCTION riod of the optical pulses used to kick the atofosllectively
termedpulse train noisg We find that even in the presence

The sensitivity of coherent quantum phenomena to thef maximal amplitude noise the structure near to quantum
introduction of extraneous degrees of freedom is well docuresonance persistincluding the low energy levels to either
mented[1]. In particular, the coupling of a quantum systemsjde of the peak This resistance to amplitude fluctuations
to its environment or, equivalently, subjection of the systenyuns counter to the expectation that quantum phenomena are
to measurement is known to result in decoherence, that is, gensitive to noise. In contrast, a small amount of noise added
loss of quantum interference phenomena. to the period of the pulses is enough to completely wash out

The experimental study of decoherence ideally requires ghe resonance structure. The robustness of the near resonant
system whose coupling to the environment may be combehavior to amplitude noise is reminiscent of recent obser-
pletely controlled. The discipline of atom optics allows the vations of quantum stability in the quantum kicked accelera-
realization of this requirement in the form of atoms interact-tor by Schiunket al. [12,13.
ing with a far detuned optical field. The atom optics kicked The remainder of this paper is arranged as follows. Sec-
rotor (AOKR), first implemented experimentally by Raizen tion Il provides background on the formal AOKR system
and co-worker$2,3], is a particular example of some interest with amplitude and period noise. Section Il reviews the
as it is a quantum system that is chaotic in the classical limitstudy of quantum resonances in the kicked rotor. Our experi-
The AOKR is realized by subjecting cold atoms to short,mental procedure and results are found in Secs. IV and V,
periodic pulses of an optical standing wave detuned frontespectively, and the results are explained in Sec. VI in terms
atomic resonance. The atoms typically experience curtailedf the recently developed classical model for quantum
energy growth(dynamical localization [4] compared with  resonance peaks. Section VIl offers conclusory remarks.
the classical case, but may also experience enhanced growth
for certain pulsing periods, an effect knownggantum reso-
nance[5]. Il. ATOM OPTICS KICKED ROTOR WITH AMPLITUDE

Previous AOKR experiments have shown that spontane- AND PERIOD NOISE

ous emission events and noise applied to the amplitude of the L . . . .
PP P The Hamiltonian for an AOKR kicked with periotl with

kicking pulse train result in the destruction of quantum dy-fI . i th litud d/ lse timing is ai .
namical localizatiori6,7]. It might then be expected that the sggrggthor:}tsslg; e amplitude and/or pulse timing Is given in

other well known signature of quantum dynamics in the
AOKR, quantum resonance, should exhibit great sensitivity

to spontaneous emission or noisy pulse trains. However, re- H=
cent experiments by d’Arcet al. have shown that detection

of quantum resonance behavior is actually enhanced in the - .
presence of spontaneous emissi®a1d, in stark contrast to Where ¢ and p are the quantum operators for t{scaled
the accepted wisdom on the effects of spontaneous emissigioMic position and momentum, respectivedyis the kick-

noise. Recent numerical work has also focused on the suf?9 strength,f is the pulse shape functiom=t/T is the
ceptibility of quantum resonance behavior to appliedScaled time, and the terni, , and Rp , introduce random
noise[11]. fluctuations in the amplitude and kicking period, respec-

Here we present further experimental evidence of the rolively. We also note the scaled commutator relationship
bustness of the quantum resonance peak to certain types [op, p]=iK, whereR=8w,T is a scaled Planck’s constant and
noise. In this case, noise is added to the kicked rotor systema, is the frequency associated with the energy change after a

by introducing random fluctuations in the amplitude or pe-single photon recoil for cesium. The scaled momenfuis

N

N
— k €08 ¢) X, Ranf (7= NRs ), (1)
n=0
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reJated to the aton_1ic momentu by the equationf)/k 0=exp(i;<cos(}>/k)exp{—i[)2/(2k)]. (5)
=p/(2hk,), wherek, is the wave number of the laser light. In )
this paper, as in Ref§8,14), momentum is presented in the FOr the analysis of quantum resonance, the second exponen-
“experimental units” ofp/ (2k,). tial term (or free evolutionterm) of Eq. (5) is of primary
Assuming, for simplicity, a rectangular pulse shape, thgmportance. We see that¥is an even multiple of 2, and
stochasticity parametes is related to experimental param- the state undergoing evolution is a momentum eigensgtaite
eters by the equation a quantum superposition of such eigenstates such that
plny=nKkn), this term becomes unity. This is the quantum
Kk = Qe Ty, (2)  resonance condition, and it may be shown that atoms initially
in momentum eigenstates undergo ballistic mot|&h at

resonant values & Fork=2m(2m-1), m a positive integer,
initial momentum eigenstates with even and addcquire
02 quantum phases after free evolution of +1 and -1, respec-
=3 (3) tively. It is found that the additional possibility of -1 for the
phase of odd momentum components of the wave function
where) is the resonant, single-beam Rabi frequency of thd€ads to oscillations in the mean energy of the kicked atomic
atoms andA (which is =2x10° rad s for these experi- ensembld16,17. Thus,k=27 is termed auantum antireso-
mentg takes into account the relative transition strengths benance
tween and laser detunings from the different hyperfine states We note that, while quantum resonances are predicted to
of cesium, as discussed in our previous pajise®, for ex- exist for all rational multiples ofk=27, resonance peaks
ample,[6,14]). have been observed in experiments and simulations only at
Noise is introduced by the terni,=1+4; ,, wheres ,is  integral multiples. In this paper, we focus on the behavior at

a random variable with probability distribution k=27 andk=4s and will refer to the energy peaks at these

where( is the potential strength created by the laser field,
and 7, is the duration of the kicking pulsél is given by

Qeff

UL, |84 < L2 values of the scaled Planck’s constant as the first and second
P(&,) = N e (4)  quantum resonances, respectively.
' 0 else For a cloud of cesium atoms at XX, as used in our

. ) ) , . . . experiments, the atomic momentum distribution has a stan-
with i=A denoting amplitude noise, amd P denoting period  4ard deviation of~5hk,, so only a small momentum sub-
noise. The noise level is denotég For amplitude noise, wWe ¢jass of the atoms may be considered to be in an initial
have O0< L,<2, where a noise level of 2 corresponds to theyomentum eigenstate. In general, each atom has a momen-
case where the kicking strength can vary between 0 and 2¢,1, of the formp=n+4 (in scaled units wheren is an
for each pulse, witfx the mean value of the kicking strength integer andB e [0,1) is known as aguasimomentuniThe

in the experiment. For period noise=0Cp < Lpmax Where  5pnropriate evolution operator when the quasimomentum of
Lp max is 1 for the o kicked rotor and 1w for the pulse (ne atoms is included is

kicked rotor in our experiments, with the ratio of the pulse
width to the pulse_ periodess 'Fhan 1% i_n our _expe_rimemts UB= ex;iiKcosfﬁ/k)exF{— i(A+ B)2(2R)]. (6)

We note that our implementation of period noise differs from

that used irf15] in that it shifts each pulse a random amountFor some values of quasimomenta, this one-kick evolution
from its zero-noise position rather than randomizing the tim-operator still exhibits the periodicity necessary for resonance
ing between consecutive pulses. This means that the effect pfg]. Specifically, ballistic energy growth occurs fdt

the period noise fluctuations is not cumulaties it is inthe  _, B=0.5 and fork=4, 3=0 or 0.5

aforementioned referengallowing a more instructive com- ! . ' A
parison of the effects of period noise with those of amplitud
noise.

The quantum resonances of the AOKR were first studied
eexperimentally by Raizen and co-work€i3,3,1G. In par-
ticular, Ref.[2] presented the results of experiments in which
the momentum distribution of the atoms was recorded for

Il. THE QUANTUM RESONANCES OF THE AOKR various kicking periods. The momentum distributions corre-

) ) o _sponding to quantum resonance were found toaeower
In afully chaotic driven system no stable periodic orbitshan those off resonance. The relatively small population of
exist in phase space and thus no frequency of the drivingioms undergoing ballistic energy growth at resonance was
force gives rise to resonant behavior. Although the classicg)yi getected experimentally and no difference was found be-
kicked rotor retains kick-to-kick correlations for any value of yveen momentum distributions for odd and even multiples of

the stochasticity parameter, for sufficiently highthe phase _
space is essentially chaotic, and the dynamics are indepeﬁ-‘zw' In Ref.[16] a further study by the group detected the

dent of the kicking period of the system. However, this is notexpected ballistic peaks &=27 and kK=4. Additionally,
true of the quantum System, even for |apgms fundamental small oscillations in the widths of the atomic momentum
periodicities exist in the quantum dynamics_ Th|s may bedistributions as a fUnCtion Of k|Ck number were seen Only at
seen by inspecting the one kick evolution operator for thek=27—a result of the antiresonance behavior described
guantum kicked rotor, which has the form earlier.
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More recent experiments by d’Arcgt al. [8-10 have first be calibrated, since the pulse heights need to be uni-
focused on the effect of spontaneous emission on the quafermly distributed. The PPG consists of a random access
tum resonance peaks. They found experimentally that spormemory(RAM) chip which can store up to'212-bit words
taneous emission makes these peaks more prominent—t@presenting samples of the pulse train. On receipt of a gate
somewhat counterintuitive result. Further theoretical investipulse, the samples in the RAM are read into a digital-to-
gations revealed that this phenomenon was due to the reshi#nalog converter at 25 MHz, corresponding to a 40 ns tem-
fling of atomic quasimomenta caused by spontaneous emigo_ral resolutlon for the p_ulse trains. A g|ve_n_real|zat|on ofa
sion, which allows more atoms to experience resonanf0iSy pulse trairfor amplitude or period noigés created by
behavior at some time during their evolution. Additionally, YSINg computer-generated pseudorandom numbers to give
reshuffling of quasimomenta results in fewer atoms gainin luctuations about the mean amplitude or mean pulse posi-

large momenta from multiple resonant kicks. Without spon- ion in a standard pulse train. The noisy pulse train is then
taneous emission, resonant atoms soon travel outside the leoaded to the PPG.

: ' . . In a typical experimental run, the cooled atoms were re-
nite observation window of the experiment and thus do NOfeased from the MOT and subjected to 20 standing wave
contribute to the measured energy of the atomic ensemble

: ulses, and then allowed to expand for an additional free
Our experiments measure the structure of the mean enyit time in order to resolve the atomic momenta. The mo-

ergy around the quantum resonance peak in a similar fashigRenwym resolution of our experiments for a 12 ms expansion
to the experiments described above. The pulse period igme is 0.29 two-photon recoils. After free expansion, the
scanned over the resonant value and the mean energy is &¢oms were subjected to optical molasses, effectively freez-
tracted from the measured momentum distributions at eacfp]g them in place, and a fluoresence image of their spatial
value of T. For the power and detuning of the kicking laser gistripution was taken. The timing of the experiment was
used in this experiment, there is a constant chance of spoRgyntrolled by sequencing software running on HTINUX
taneous emission per pulse ®2.5%. As in[8], this is found  gperating system kernel giving worst case timing errors of 30
to increase the height and width of the resonance peaks arﬂg [20], or 0.25% of the atomic time of flight.

make them more amenable to investigation. Our numerical gome experimental imperfections have a systematic effect
studies show that the nonzero spontaneous emission rag@ our data and need to be taken into account in simulations
does not affect the study of amplitude noise and period noisg, order for meaningful comparisons to be made. First, when
on the quantum resonance peak. This is because the mechfa standing wave is on, individual atoms experience differ-
nisms by which pulse train noise and spontaneous emissigRq potentials depending on their radial position in the beam,
noise influence the .atomic dynamics are tptally different:gye to the Gaussian mode shape of the beam. This can affect
Spontaneous emission events affect individual atoms byhe experimental resolution of the multipeaked “diffusion
changing their quasimomenta; amplitude and period noisgasonance” structure in the mean energy which occurs be-
change the kick-to-kick correlations over the entire atomicyeen primary quantum resonances, as this structure is
ensemble and do not change atomic quasimomenta. Thus t@?rongly dependent on the exact potential strength
advantages of a relatively high spontaneous emission raf@4,20,21. However, it is not so critical to the observation of
may be utilized without biasing the study of the effects of gyantum resonance peaks, due to the very resistance to varia-

pulse train noise on the quantum resonance peaks. tions in amplitude discussed in this paper. Nonetheless, this
spread in kicking strengths is taken into account in our simu-
IV EXPERIMENTAL SETUP lations. Second, in order to achieve a spontaneous emission

rate sufficiently high to make the quantum resonance peaks

Our experiments utilize a pK cloud of cold cesium at- prominent and amenable to study, a detuning from resonance
oms, provided by a standard six-beam magneto-optical trapf about 500 MHz was used in our experiments. This value
(MOT) [18,19. The atoms interact with a pulsed, far- of the detuning is large enough to ensure the condition
detuned optical standing wave which is created by retrores() (where() is the average atomic Rabi frequency taken
flecting the light from a 150 mWslave diode laser which is  over the different hyperfine transitionghich is assumed in
injection locked to a lower powegimastey diode laser. The the derivation of the AOKR Hamiltoniaf22]. However, the
output of the master laser may be tuned over a range of abodifference in detuning between tHé=4 ground state and
4 GHz relative to the 8;,,(F=4) —6P3,(F'=5) transition  each of the hyperfine excited stafes=3, 4, 5, as well as the
of the cesiumD, line. The detuning of the laser from this difference in coupling strengths between magnetic substates,
transition is denoted. The frequency of the kicking laser is leads again to a spread in kicking strengths detailed in
monitored by observing the spectrum of its beat signal withRef.[14]). Once again, this effect is allowed for in our simu-
the trapping laser. lations.

The standing wave has a horizontal orientation rather than We also note that the application of amplitude and period
the vertical orientation used in the quantum accelerator exaoise to our pulse trains inherently creates random scatter in
periments of Refd.12,13. It is pulsed by optically switching our data since each different noise realization gives rise to a
the laser light using an acousto-optic modulg®®M). The  different mean energy. Thus, meaningful results may be ob-
amplitude of the AOM’s driving signal is controlled by a tained only by averaging the energy from a number of sepa-
programmable pulse generai®PQ to achieve the desired rate experiments with different noise realizations. For experi-
pulse train shape. For amplitude noise experiments, thements where the noise is solely a result of spontaneous
AOM's response to the amplitude of its driving signal mustemission events, the statistics are already excellent, since the
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mean energy is calculated for a large number of individual 190
atoms. This is not true for pulse train noise experiments
which affect correlations over the entire atomic ensemble.
Each point on our curves represents an average of 12 sepi_.
rate experimentgéexcept in the zero-noise case, where three g
repetitions was found to be sufficignThis number of rep-
etitions reduces the error to a size such that any quantun
resonance structure may be confidently identified.

lu

—recoi

V. EXPERIMENTAL AND SIMULATION RESULTS

Energy (2 photon

We now present experimental measurements of the qua

tum resonance peaks Bt27 and 4, in the presence of
noise applied to the amplitude or period of the kicking pulse (@) (b)
train (Figs. 1 and 2 Simulations are performed using the 10— . . . . . . .

i i 6 62 64 66 122 124 126 128
Monte Car.lo wave function method .as has. prewous'.y been Scaled Planck’s Constant Scaled Planck’s Constant
discussed in Ref§14,21]. For comparison with simulations,

the value ofT corresponding to quantum resonaritiet is, 100
R=2m or 4a7) is taken to be the experimental position of the
resonance peak. This gives values Bfs=61us and 0T

Tres,7=121.5us which are within 1% of the theoretical val-
ues of 27/8w,=60.5us and 4r/8w,=121 us, respectively.
The experimental resolution is limited by the spacing be-
tween consecutive values af (i.e., 0.5us). However, the
exact position of the quantum resonances is not important tct 60
the results presented here which are concerned with the ovel
all shape of the resonance peaks.
In this section, we measure the mean energy of the atomi w0l
ensemble, which is given by=(p?)/2(2hk )*. This quantity 5 4
is referred to as the energy in two photon-recoil units. The g}
height of the quantum resonance for a given number of kicks ¢

ecoil units)

50 4

ergy {2 ph

n was found in Ref[18] to be E=(1/4)(x/R)?n. In the 207
presence of amplitude noise, additional diffusive energy is 4,
gained which, foiL,=2, is of size(«?/12k?)n [23]. Thus, for

maximal amplitude noise, the height of the quantum reso-

nance energy peak is predicted to be FIG. 1. Measured energiga) and(b) near the first and second
primary quantum resonances and associated simulation résults

6 6.2 6.4 6.6 122 124 126 128
Scaled Planck’s constant Scaled Planck’s constant

and (d) for various levels of amplitude noise. We have takeik
1/« 2 =3.77, as calculated from E(7) and the spontaneous emission rate
Eres= 5 ; n () used for simulations is 2.5%. The dotted line represents the no-
noise case; circles£,=0.50; diamonds,L,=1.0; triangles,La
=1.50; and squareg;,=2.0. Sample error bars are shown on the

. . . second point for each curve.
We use this equation to determine the valuecdb be used

in our amplitude noise simulations. Although this method )

systematically underestimates the true value xof(since E I=l<5) n. (8)

small populations of resonant atoms with high momenta can- g K

not be detected experimentgllif avoids the many system-

atic errors that arise wher is estimated from power mea- ) _

surements of the kicking beam outside the MOT chamberThus, having measured the height of the resonance for an

The values of« gained from this equation are consistent with amplitude noise level of 2, we can solve H®@) for /K

those estimated from experimental parameters. which gives 3.77+0.04. Similarly, having calculated the ex-
If period noise is being applied instead, simulations showperimental quasilinear energy of 66+£0.7 from the line fitted

that the energy around the second quantum resonance saly-Fig. 2b), we can solve Eq(8) for x/K which gives

rates at the quasilinear value for the highest noise level3 63+0.03. Given the different systematic errors which arise

which is given by multiplying the quasilinear energy growth for amplitude and period noise calculations efand the

«%14%? [24] by the number of kicks to give possibility of laser power drift between experimental runs,
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calculating the Rabi frequendy from Egs.(2) and(3) and
using the standard expression to find the probability of spon-
taneous emissiof25]. Measured and simulated energies are

plotted againsk [which may also be thought of as the scaled
kicking period of the kicked rotor systefas in[18]) where

k=2 corresponds to the kicking period at which the first
qguantum resonance peak ocdurs

A. Amplitude noise
In our experiments, we measured energies at pulsing pe-
riods close to quantum resonance for the first and second

guantum resonances, which occurkat27 and 4, respec-
tively. Amplitude noise was applied at levels 64=0.5, 1,

Energy (2 photon-recoil units)

(@) (0) 1.5, and 2. Figure 1 shows the results obtained. We see that
062 64 68 122 124 126 128 the resonance peak increases in height and that the reduced
Scaled Planck’'s Constant Scaled Planck's Constant energy level to either side of resonance rises with increasing

noise level. However, somewhat surprisingly, the resonance
peak still remains prominent compared to the surrounding
energies, even for the highest possible level of amplitude
noise, although it becomes less well defined. We note that
there is essentially no difference between the behavior seen
at the first and second quantum resonances apart from the
fact that the energies are systematically lower for the second
quantum resonance in experiments. This is due, in part, to
the fact that the atomic cloud expands to a larger size during
kicking for the second quantum resonance as compared with
the first. This leads to a lower average kicking strength being
experienced by the atom@ feature not included in our
simulationg. Additionally, the total expansion time for the
atoms, including kicking, is constant, which means that for
the sweeps over the second quantum resonance the atoms

Energy (2 photon-recoils)

L A have less free expansion time after kicking than at the first
© @ quantum resonance. This also leads to a systematic underes-
105 62 64 66 122 124 126 128 timation of the energy.
Scaled Planck’s constant Scaled Planck’s constant That the dynamics at quantum resonance itself is robust

) . against amplitude noise is not surprising. The resonance
_FIG. 2. Measured energigg) and(b) near the first and second grises because the time between pulses matches the condition
primary quantum resonances and associated simulation résults for unity quantum phase accumulation after free evolution.
and (d) for various levels of period noise. We have takefk  The introduction of amplitude noise does not affect this fun-
=3.61, as calculated from E(B) and the spontaneous emission rate gamental resonance criterion. Seen from the point of view of
used for simulations is 2.5%. The dotted line represents the NOstom optics, the resonant period is the Talbot tifoerre-

i ; circl =0.01; di d =0.02; tri les,C . . .
noise case; circlestp lamondsLp Nangeste  shonding tok=4) [8,9]. While the amplitude of the pulses

=0.05; and squareg;p=0.1. Sample error bars are shown on the . . .
second point for each curve. (b), a straight line was fitted to the applied affects the number of atoms coupled into higher mo-

energies in the highest noise case. It gives the quasilinear energy RRENtUM classes, it does not affect the period-dependent Tal-
66+0.7. bot effect, which gives rise to the characteristic energy

growth seen at resonance.

we do not expect perfect agreement between the two values. The most surprising feature in these experiments is the
Using the values ok gained from Egs(7) and (8) in our surwyal of low energy levels to eﬁher S|de of'the resonance.
simulations we find good quantitative agreement between exZersistence of quantum dynamical localization is the most
perimental and simulation results. We note that period nois€Pvious explanation for the sharp decrease in energy to ei-
experiments allowk to be determined more accurately be- ther side of qugntum resonance. However the results of Steck
cause the quantum resonance behavior is destroyed a @l [23] (which were performed far from quantum reso-
therefore the wings of the momentum distributions are nohance ak=2.08 demonstrated that dynamical localization is
populated. This leads to more accurate values for the experdestroyed by high leveleorresponding taC,=2) of ampli-
mentally measured final energies. tude noise. In Sec. VI, we will employ the recently devel-

Once k has been calculated from the measured energiesped e classical description of the quantum resonance peak
the spontaneous emission rate per pulse may be deduced toyexplain this persistence of localization.
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We see that the experimentally measured resonance peajhitude noise. Since the effect of amplitude noise is the same
are broader than those predicted by simulations. The broadpy the resonance peaks &2 and 47 we consider only

eni_ng may result fro'm a higher than expected spontaneo%e resonance peak abdtt 277, although the arguments eas-
emission rate, resulting from a small amount of leaked mo- '

lasses light which is inevitably present during the kiCking|Iy generalize to other quantum resonance peaks occurring at

cvele. Additionallv. phase iitter on the optical standin Wavemultiples of this value. We also limit our attention to the case
c)a/m Be caused t;/ I?re ue]nc instabilit IOof the kicking IaserWhere there is no spontaneous emission, as this form of de-
y Ireq y Y 9 coherence, at the levels present in these experiments, merely

and mechanical vibrations of the retroreflecting mirror. Suc'broadens the resonance peak and does not affect its qualita-
phase noise is equivalent to a constant level of period nois&

and would also lead to broadening of the resonance. It |sVe behavior in the presence of amplitude noise.

hard to quantify the amount of phase noise present, althou The stability of the quantum resonance structure in the
quantily P P ' . “late time energyas measured in our experimentaay be
the clear visibility of the resonances when no extra perio

xplained by appealing to theclassical mechanics formu-

noise is appliedsee dotted line, Fig.)2suggests that it is lated by Wimbergeet al. [10,18,27. In this description of
small in amplitude. However, these uncertainties do not af; T

fect the observation of the qualitative shape of the resonancthe kicked rotor dynamics, a fictitious Planck's constant is
q P \GRtroduced which is referenced to zero exactly at quantum

structure under the_ application of amplitude noise and, i esonance. Thus, even though the quantum resonance peak is
pgrtlculgr, the puzzling robustness of the low energy levels tQ, purely quantum mechanical effect, its behavior may be
either side of resonance. well described by a(fictitious) classical map near to
B. Period noise resonance. o .
. | its showi h Before considering this picture, however, we will look at
For comparison, we also present results showing the efy,q regonances found in the early time classical and quantum

fect of period noise on the first two primary quantum reso'energy growth rates of the kicked rotor which provide simi-
nance peaks. It may be seen that even small amounts of this = =" h . ¢ val fer The classical
type of noise have a large effect on the near resonant dynanf’ NSIgnt OVer a wider range of values 1kr The classica

ics. Figure 2 shows the results for noise levels of 0.01, 0.022eS were first derived by Rechester and Wiiié] and

0.05, and 0.1. The first primary quantum resonance peak i r?ir V\IIOI’k vl\(/a38e>_<rtﬁnded to the_ qua:‘ntur:: kickled. rotorl by
found to be very sensitive to small deviations from strict > 1€PEYans ¥28). These expressions for the early time clas-

periodicity of the pulse train. Noise levels of 0.05 and 0.1Sical and quantum energy growth radehave the advantage

completely wash out the peak, regaining the flat energy v&at they hold for any pulsing period and not just for those

kicking-period curve that we expect in the case of zero kick-W'th'n an € neighborhood of the quantum resonance period.

to-kick correlations. The effect of period noise on the second:'gurfe 3a) plots the early time energy gr0\_/vth raefor the .
primary quantum resonance is similar, although it is ever{:IaSSIcaI and quantum dynamics against the effective
more sensitive with an 0.02 noise level completely destroyPlanck’s constank. For sufficiently large values ot/ the
ing the peak. At higher noise levels, the mean energy tendénergy growth rate after five kicks obeys the approximate
toward the zero-correlation energy level. expressior{28]

The greater effect of period noise on the second quantum 2
resonance is due to the greater absolute variation possible in  p = -(f) (
the free evolution period between pulses, since the kicking
period in this case is twice that of the first quantum reso- . )
nance. This has been verified by our group in separate ewvhere thel, are Bessel functions arifi=x« for the classical
periments where the absolute variation of the kicking perioccase andK=«q=2« sin(k/2)/k for the quantum case. The
was held constarj26]. Such noise was found to have a moreenergy growth rate is expressed in the same energy units
uniform effect on structures in the mean energy. Sensitivityused in Ref[14]. This formula was generalized by Steek
of the dynamics near quantum resonance to noise applied td. [23] to the case where amplitude noise is present in the
the kicking period is not surprising, given the precise depensystem, giving
dence of the resonance phenomenon on the pulse timing. The )
quantum phase accumulated between kicks is randomizeq Lar(éK)JrK_[_ jZ(K)—jZ(K)+j2(K)+j2(K)]
and the kick-to-kick correlations destroyed. However, the 4R? K2 ! 2 3 '
stark contrast between the sensitivity of the near resonant
dips in energy to amplitude and period noise requires further (10

elucidation, which we now provide by looking at the corre- \yhereK is defined as beforei is a random variable giving

lations which lead to quantum resonance at early times anghe flyctuation ink at each kick, vaiK) is the variance of
the e classical dynamics of the kicked rotor near quantumyne noise distributiorP(5K), and

resonance.

% = 35(K) = () + B(K) + J%(K)) C)

K

VI. REAPPEARANCE OF STABLE DYNAMICS CLOSE TO Ta(K): = f P(5K)J,(K + sK)d(5K). (12)
QUANTUM RESONANCE -

We now seek to explain the surprising resilience of theThe new functions7, are averages of the normal Bessel
structure near quantum resonance to the application of anfunctions over the noise distribution. We note that Refs.
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5

of a uniform initial momentum distribution is no longer valid
45p [T PRIOPRRPIRS: L SPON [29]. Assuming, however, that a broad initial momentum dis-

ot a s e - ]

it
RPN ~. - it tribution may be maintained in the classical limit, we see that
- I

-

i "',"" iy AR RIS = “\‘,— isl] a peak exists at=0 for both the classical and quantum dy-
i [ [ namics and the classical and quantum curves match perfectly

until kR~ 0.5. More importantly, a reduced energy region at
k=0.5 remains even for the highest level of amplitude noise,

as seen in Fig.@®). At larger values oK, the oscillations in
the classical growth rate are destroyed by noise. However, in

the quantum case, the robust peak structure seenkdar
repeats itself at multiples &=27. The survival of the struc-
ture neark=0 is attributable to the near integrability of the

4

b
3

w
T

]
!

I
1
Fi
i
N1
i
i
i
i
!
Y

n
T

D (2 photon-recoil units)
[\v]
o

-
2]
T

05
dynamics(classical and quanturfor small values ok. We
% 1 5 3 " 5 5 recall that in the scaling used for these experiments the ratio
) Scaled Planck’s constant kIR is kept constant where is the classical stochasticity
100— . . . - . parameter of the system. Thus we hawe>0 ask—0. At

o0} small values oRk and thusk, since the perturbation from an
unkicked rotor is quite small, the system is near integrable
(i.e., the dynamics are stablend the effect of fluctuations in

the perturbationamplitude noisgis far less compared with

80r

701

the destruction of quantum correlations due to amplitude
noise occurs due to the stochastic variation of the argument
RS Ky Of the Bessel functions. Ik, is small then so is the abso-

E sol the effect at highek/k where the system is chaotic. Figure

g 3(a) shows that, in the quantum case, this stability reappears
L 50§ o ] near quantum resonance, a fact that may be explained by
é sl AN inspection of Eqs(10) and(11). These equations show that

3]

w

20fa ="

730000003 ~50000008 lute variation ofky inside the Bessel functions due to ampli-
10600000 000 000 ©00000¢ tude noise and, therefore, there is little damage to the quan-
ol s . AB C s tum correlations themselves. Since,—0 at quantum

6.15 6.2 6.25 6.3 6.35 6.4

) S , resonance, the same behavior seen esd reappears at
caled Planck’s constant
integral multiples ofk=2.
FIG. 3. Analytical predictions of the effect of amplitude noise  The formula for the early time energy growth rddealso
on the quantum resonance peak atfar «/kK=3.7.(a) shows the  provides us with predictions of the qualitative behavior of
behavior of the early energy growth rdde[as given by Eq(10)] of  the late time energ§l4]. However, if we limit our attention

the classical and quantum kicked rotor as a functiok é6r am-  tg the energies fok=27m wherem is a positive integer, the
plitude noise levels of ,=1 and 2. Dashed and dotted lines are the ¢ ¢|assical model of Wimbergest al. may be employed to

classical rates for amplitude noise levels of 1 and 2, respectivelysy|cylate the energies around the quantum resonance after
Solid and dash-dotted lines are the quantum rate€fer1 and 2,

respectively(b) shows the resonant peak produced by 20 iterationéarger numbers of kicks. I€:27Tm—1_< is the (smal) _dlffer-

of Eq. (12) aboutk=27 with £,=0 (circles, 0.5 (solid ling, 1.0 ~ €Nce betweek and a resonant point, the dynamics of the
(dash-dotted ling 1.5 (dashed ling and 2.0(dotted ling. Each  AOKR is well approximated by the ma[i8]

point is an average of 10 different noise realizations. The letters ~ .

A-C indicate values of as referenced from Fig. 4. Pr1= Pnt Ky SIN Py, (129

[23,29 deal with diffusion of the momentum, whereas we $ne1= ¢+ SQr€)py + 7l +KB mod 27, (12b)
present our results in terms pfk. Hence, when comparing T = - )
our results for energies or energy growth rates with the for—Where Kn=lelky, kn=(x/RIRap [12], pn and ¢, are the mo

s in the af oned rof division iy mentum and position at kick, respectivelyp,=|€|n, for ny
nmeuczzs:r; e aforementioned references, divisionkoys a positive integer, ane=k-2mm<1 for positive integersn.

_ ) ) _ In this paper,| is set to 1 without loss of generality as in
Of particular interest is the behavior neee 0. We note Refs.[18,27. In the reformulated dynamics,plays the part

that using Shepelyansky's formula in this regime can beyf pjanck’s constant and—0 may be considered to be a
problematic because, in the fully scaled system, the width ofyasiclassical limit.

the initial atomic momentum distribution scales wikhand Figure 3b) shows the energy peak produced by the
may become small enough that Shepelyansky’s assumptiarlassical dynamics for various amplitude noise levels. We see
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FIG. 4. Phase space portraits for thelassi-

cal standard map fok=27 andk=3.7. The fig-
ures in the first row(a), (b), and(c) are for an
amplitude noise level of 0 and for values ©bf
0.001, 0.02, and 0.04, respectively. The second
row (d), (e), and(f) shows thee classical phase
space for an amplitude noise level of 2 and the
same values ot. In Fig. 3b), the values ofk
corresponding t&=0.001, 0.02, and 0.04 are la-
beledA, B, andC, respectively.

~ O O N 0 WO

A~ GO O N 0 ©

that even the maximum noise level of 2 does not destroy the Eor k=24 (as in Fig. 4 the resonant value of quasimo-
peak, a f|nd|ng that agl’eeS W|th the eXperimental and Simq’nentum ISB:OS [10] (Corresponding to the ||np:2ﬂ- in
lation results presented in the previous section. Wimbegjer the phase space figujeSubstitution of this value o8 into

al. have derived a scaling law for the ratio of the mean engq. (14) followed by averaging over a uniform distribution
ergy at a certain value of to the on-resonant energy. This fqr &0 gives E,~ (k?/2)n? (this expression is exact when
ratio is a function ofe, the kicking strengttx/®, and the kick =0 — that is, ballistic growth of energy occurs at exact
number [18,27. The scaling law reproduces the quantumquantum resonance f@=0.5 — and the mean energy of the
resonance peak, and its form is found to arise from theatomic ensemblgi.e., averaging ovep) is raised signifi-

changes in the classical phase space ass varied andk/k ~ cantly ase—0 (in fact it grows linearly with kick number
is held constant. These changes may be seen in Fig. 4. Th&7]). Thus, the uniquely quantum energy peak found at in-
first row shows thee classical phase space for increasing teger multiples ok=27 may also be explained by dassi-
and no amplitude noise. For the relatively unperturbed syseal resonance of the classical dynamics which is valid in
tem which exists at very low values @f (say e<0.00), this regime.
lines of constant momentum dominate the phase spsee For larger values of, the phase space of the system is
Fig. 4(a)]. significantly distorted and the approximate expression in Eq.
We now consider the near resonant mechanics when zefd3) is no longer valid. However, two facts in particular give
noise is present, so thist=k=constant for alh. In this case, & gqualitative explanation for the decline in mean energy
following Wimbergeret al, we may calculate the kinetic @way from exact resonance: First, the most distorted area of
energyEn:e‘2<pﬁ/2> by neglecting terms of order in Eq. phase space is that aroupd 27, that is, the region respon-

; . sible for ballistic growth for vanishing [18]. Thus the num-
(12b) and iterating Eqs(128 and(12b) followed by averag- : . e L ; . )
ing over ¢ and 3. Iterating Eq(12) in the limit of vanishing ber of trajectories giving ballistic growth is drastically less

>0. i
€, and considering for simplicity only the case where 0 ened fore>0. Second, although the phase space region

- X X responsible for ballistic energy growth is warped, the struc-
and po=0, we find the momentum after theth kick t©  y,res which prevent stochastic energy grovioimogorov-

be [27] Arnold-Moser tor) remain fore>0 and so the full quasilin-
n-1 ear rate of energy growth is not attained. These two facts
Pn = ekE sin ¢ + m(1 + 26)s], (13) taken together give a qualitative explanation for the falloff in
=0 mean energy as is increased, as seen in Figby

This qualitative explanation of the structure near quantum

whence the mean energy may be calculated as resonance also holds in the case where maximal amplitude

2/ n1 noise is applied to the system, as seen in the second row of
E,~—({ > sin¢y+m(1+28)s] Fig. 4. At exact quantum resonan¢e=0) ballistic motion
2 s5'=0 still occurs even in the presence of amplitude noise. For
€>0, the phase space is distorted as before and some invari-
Xsi g+ m(1+28)s'] ), (14) ant curves are destroyed by the applied noise. However, even

for e=0.04[Fig. 4(f)], the phase space has not become com-

pletely stochastic and so we see the same quantum resonance
where the average on the right-hand side RHS is taken ovestructure as in the no-noise case, albeit with a lower peak-to-
all values of,,. valley energy ratio.
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The persistence of the quantum resonance structure in tham resonance peak provides an additional test of the validity
presence of amplitude noise may now be seen to be due tof the e classical model for the AOKR.
the reappearance of the quasiclassical dynamics which oc-

curs at values ok close to the resonance value, and far from

the actual classical limit. Theclassical description which is We have presented experimental results demonstrating
valid in this regime is marked by a return to complete inte-that the quantum resonance peaks observed in atom optics
grability exactly at quantum resonance. By contrast, the exkicked rotor experiments are surprisingly robust to noise ap-
treme sensitivity of the resonant peak to even small amountglied to the kicking amplitude, and that quantum resonance
of period noise is precisely due to the sensitivity of thispeaks are still experimentally detectable even at the maxi-

approximation to the exact value & (and thus the pulse mum possible noise level. By contrast, the application of

timing). While similar arguments to those used for amplitudee.ven small amounts of noise to the kicking periad Is suifi-
Céctent to completely destroy the resonant peak and return the

noise might suggest that the resonance peak should be rOblf:)ehavior of the system to the zero-correlation limit. We have

to periqd noi;e tqo, itis the Very reappearance of th? StablShown that the stability of the resonant dynamics in the pres-
dynamics Wh'c,h IS actually rqlnqd. by_ this type of noise. If ence of amplitude noise is reproduced by thelassical dy-

the mean deviation from periodicity is of the order of the 5 mics of Wimbergeet al. Viewed in light of this theoretical
width of the quantum resonance peak, the suppression Qfeaiment, the resilience of the quantum resonance peak to
energy growth to either side of the peak is destroyed, and thgy, it de noise is due to the reappearance of near integrable

final energy approaches the zero correlation limit for any, cjassical dynamics near quantum resonance, the behavior
value of the kicking period. Comparison with the resonances \ hich is analogougalthough not identicalto that of the

seen in the early energy growth rates in the actual classicil_ ked rotor in th twal classical limit & 0
limit [Fig. 3(@)] shows that the behavior of the quantum reso-<ICX€d rotor in the actual classicat fimit &= 0.

nance in the presence of amplitude noise is qualitatively

identical to that of the classical resonance. Thus, although ACKNOWLEDGMENTS
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