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The effect of pulse train noise on the quantum resonance peaks of the atom optics kicked rotor is investi-
gated experimentally. Quantum resonance peaks in the late time mean energy of the atoms are found to be
surprisingly robust against all levels of noise applied to the kicking amplitude, while even small levels of noise
on the kicking period lead to their destruction. The robustness to amplitude noise of the resonance peak and of
the fall-off in mean energy to either side of this peak are explained in terms of the occurrence of stable,e
classical dynamics[S. Wimberger, I. Guarneri, and S. Fishman, Nonlinearity16, 1381 (2003)] around each
quantum resonance.
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I. INTRODUCTION

The sensitivity of coherent quantum phenomena to the
introduction of extraneous degrees of freedom is well docu-
mented[1]. In particular, the coupling of a quantum system
to its environment or, equivalently, subjection of the system
to measurement is known to result in decoherence, that is, a
loss of quantum interference phenomena.

The experimental study of decoherence ideally requires a
system whose coupling to the environment may be com-
pletely controlled. The discipline of atom optics allows the
realization of this requirement in the form of atoms interact-
ing with a far detuned optical field. The atom optics kicked
rotor (AOKR), first implemented experimentally by Raizen
and co-workers[2,3], is a particular example of some interest
as it is a quantum system that is chaotic in the classical limit.
The AOKR is realized by subjecting cold atoms to short,
periodic pulses of an optical standing wave detuned from
atomic resonance. The atoms typically experience curtailed
energy growth(dynamical localization) [4] compared with
the classical case, but may also experience enhanced growth
for certain pulsing periods, an effect known asquantum reso-
nance[5].

Previous AOKR experiments have shown that spontane-
ous emission events and noise applied to the amplitude of the
kicking pulse train result in the destruction of quantum dy-
namical localization[6,7]. It might then be expected that the
other well known signature of quantum dynamics in the
AOKR, quantum resonance, should exhibit great sensitivity
to spontaneous emission or noisy pulse trains. However, re-
cent experiments by d’Arcyet al. have shown that detection
of quantum resonance behavior is actually enhanced in the
presence of spontaneous emission[8–10], in stark contrast to
the accepted wisdom on the effects of spontaneous emission
noise. Recent numerical work has also focused on the sus-
ceptibility of quantum resonance behavior to applied
noise[11].

Here we present further experimental evidence of the ro-
bustness of the quantum resonance peak to certain types of
noise. In this case, noise is added to the kicked rotor system
by introducing random fluctuations in the amplitude or pe-

riod of the optical pulses used to kick the atoms(collectively
termedpulse train noise). We find that even in the presence
of maximal amplitude noise the structure near to quantum
resonance persists(including the low energy levels to either
side of the peak). This resistance to amplitude fluctuations
runs counter to the expectation that quantum phenomena are
sensitive to noise. In contrast, a small amount of noise added
to the period of the pulses is enough to completely wash out
the resonance structure. The robustness of the near resonant
behavior to amplitude noise is reminiscent of recent obser-
vations of quantum stability in the quantum kicked accelera-
tor by Schlunket al. [12,13].

The remainder of this paper is arranged as follows. Sec-
tion II provides background on the formal AOKR system
with amplitude and period noise. Section III reviews the
study of quantum resonances in the kicked rotor. Our experi-
mental procedure and results are found in Secs. IV and V,
respectively, and the results are explained in Sec. VI in terms
of the recently developede classical model for quantum
resonance peaks. Section VII offers conclusory remarks.

II. ATOM OPTICS KICKED ROTOR WITH AMPLITUDE
AND PERIOD NOISE

The Hamiltonian for an AOKR kicked with periodT with
fluctuations in the amplitude and/or pulse timing is given in
scaled units by

Ĥ =
r̂2

2
− k cossf̂do

n=0

N

RA,nfst − nRP,nd, s1d

where f̂ and r̂ are the quantum operators for the(scaled)
atomic position and momentum, respectively,k is the kick-
ing strength, f is the pulse shape function,t= t /T is the
scaled time, and the termsRA,n and RP,n introduce random
fluctuations in the amplitude and kicking period, respec-
tively. We also note the scaled commutator relationship

ff̂ , r̂g= ik–, wherek–=8vrT is a scaled Planck’s constant and
vr is the frequency associated with the energy change after a
single photon recoil for cesium. The scaled momentumr̂ is
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related to the atomic momentump̂ by the equationr̂ / k–

= p̂/ s2"kLd, wherekL is the wave number of the laser light. In
this paper, as in Refs.[8,14], momentum is presented in the
“experimental units” ofp̂/ s2"kLd.

Assuming, for simplicity, a rectangular pulse shape, the
stochasticity parameterk is related to experimental param-
eters by the equation

k = VeffvrTtp, s2d

whereVeff is the potential strength created by the laser field,
andtp is the duration of the kicking pulse.Veff is given by

Veff =
V2

D
, s3d

whereV is the resonant, single-beam Rabi frequency of the
atoms andD (which is <23109 rad s−1 for these experi-
ments) takes into account the relative transition strengths be-
tween and laser detunings from the different hyperfine states
of cesium, as discussed in our previous papers(see, for ex-
ample,[6,14]).

Noise is introduced by the termsRi,n=1+di,n, wheredi,n is
a random variable with probability distribution

Psdi,nd = H1/Li , udi,nu , Li/2,

0 else
J s4d

with i =A denoting amplitude noise, andi =P denoting period
noise. The noise level is denotedLi. For amplitude noise, we
have 0øLAø2, where a noise level of 2 corresponds to the
case where the kicking strength can vary between 0 and 2k
for each pulse, withk the mean value of the kicking strength
in the experiment. For period noise, 0øLP,LP,max where
LP,max is 1 for the d kicked rotor and 1−a for the pulse
kicked rotor in our experiments, witha the ratio of the pulse
width to the pulse period(less than 1% in our experiments).
We note that our implementation of period noise differs from
that used in[15] in that it shifts each pulse a random amount
from its zero-noise position rather than randomizing the tim-
ing between consecutive pulses. This means that the effect of
the period noise fluctuations is not cumulative(as it is in the
aforementioned reference), allowing a more instructive com-
parison of the effects of period noise with those of amplitude
noise.

III. THE QUANTUM RESONANCES OF THE AOKR

In a fully chaotic driven system no stable periodic orbits
exist in phase space and thus no frequency of the driving
force gives rise to resonant behavior. Although the classical
kicked rotor retains kick-to-kick correlations for any value of
the stochasticity parameter, for sufficiently highk the phase
space is essentially chaotic, and the dynamics are indepen-
dent of the kicking period of the system. However, this is not
true of the quantum system, even for largek, as fundamental
periodicities exist in the quantum dynamics. This may be
seen by inspecting the one kick evolution operator for the
quantumd kicked rotor, which has the form

Û = expsik cosf̂/k–dexpf− ir̂2/s2k–dg. s5d

For the analysis of quantum resonance, the second exponen-
tial term (or free evolutionterm) of Eq. (5) is of primary

importance. We see that ifk– is an even multiple of 2p, and
the state undergoing evolution is a momentum eigenstate(or
a quantum superposition of such eigenstates) unl such that

r̂unl=nk–unl, this term becomes unity. This is the quantum
resonance condition, and it may be shown that atoms initially
in momentum eigenstates undergo ballistic motion[5] at

resonant values ofk–. For k–=2ps2m−1d, m a positive integer,
initial momentum eigenstates with even and oddn acquire
quantum phases after free evolution of +1 and −1, respec-
tively. It is found that the additional possibility of −1 for the
phase of odd momentum components of the wave function
leads to oscillations in the mean energy of the kicked atomic

ensemble[16,17]. Thus,k–=2p is termed aquantum antireso-
nance.

We note that, while quantum resonances are predicted to

exist for all rational multiples ofk–=2p, resonance peaks
have been observed in experiments and simulations only at
integral multiples. In this paper, we focus on the behavior at

k–=2p andk–=4p and will refer to the energy peaks at these
values of the scaled Planck’s constant as the first and second
quantum resonances, respectively.

For a cloud of cesium atoms at 5µK, as used in our
experiments, the atomic momentum distribution has a stan-
dard deviation of,5"kL, so only a small momentum sub-
class of the atoms may be considered to be in an initial
momentum eigenstate. In general, each atom has a momen-
tum of the formr=n+b (in scaled units), where n is an
integer andbP f0,1d is known as aquasimomentum. The
appropriate evolution operator when the quasimomentum of
the atoms is included is

Ûb = expsik cosf̂/k–dexpf− isn̂ + bd2/s2k–dg. s6d

For some values of quasimomenta, this one-kick evolution
operator still exhibits the periodicity necessary for resonance

[18]. Specifically, ballistic energy growth occurs fork–

=2p ,b=0.5 and fork–=4p ,b=0 or 0.5.
The quantum resonances of the AOKR were first studied

experimentally by Raizen and co-workers[2,3,16]. In par-
ticular, Ref.[2] presented the results of experiments in which
the momentum distribution of the atoms was recorded for
various kicking periods. The momentum distributions corre-
sponding to quantum resonance were found to benarrower
than those off resonance. The relatively small population of
atoms undergoing ballistic energy growth at resonance was
not detected experimentally and no difference was found be-
tween momentum distributions for odd and even multiples of

k–=2p. In Ref. [16] a further study by the group detected the

expected ballistic peaks atk–=2p and k–=4p. Additionally,
small oscillations in the widths of the atomic momentum
distributions as a function of kick number were seen only at

k–=2p—a result of the antiresonance behavior described
earlier.

SADGROVEet al. PHYSICAL REVIEW E 70, 036217(2004)

036217-2



More recent experiments by d’Arcyet al. [8–10] have
focused on the effect of spontaneous emission on the quan-
tum resonance peaks. They found experimentally that spon-
taneous emission makes these peaks more prominent—a
somewhat counterintuitive result. Further theoretical investi-
gations revealed that this phenomenon was due to the reshuf-
fling of atomic quasimomenta caused by spontaneous emis-
sion, which allows more atoms to experience resonant
behavior at some time during their evolution. Additionally,
reshuffling of quasimomenta results in fewer atoms gaining
large momenta from multiple resonant kicks. Without spon-
taneous emission, resonant atoms soon travel outside the fi-
nite observation window of the experiment and thus do not
contribute to the measured energy of the atomic ensemble.

Our experiments measure the structure of the mean en-
ergy around the quantum resonance peak in a similar fashion
to the experiments described above. The pulse period is
scanned over the resonant value and the mean energy is ex-
tracted from the measured momentum distributions at each
value ofT. For the power and detuning of the kicking laser
used in this experiment, there is a constant chance of spon-
taneous emission per pulse of,2.5%. As in[8], this is found
to increase the height and width of the resonance peaks and
make them more amenable to investigation. Our numerical
studies show that the nonzero spontaneous emission rate
does not affect the study of amplitude noise and period noise
on the quantum resonance peak. This is because the mecha-
nisms by which pulse train noise and spontaneous emission
noise influence the atomic dynamics are totally different:
Spontaneous emission events affect individual atoms by
changing their quasimomenta; amplitude and period noise
change the kick-to-kick correlations over the entire atomic
ensemble and do not change atomic quasimomenta. Thus the
advantages of a relatively high spontaneous emission rate
may be utilized without biasing the study of the effects of
pulse train noise on the quantum resonance peaks.

IV. EXPERIMENTAL SETUP

Our experiments utilize a 5µK cloud of cold cesium at-
oms, provided by a standard six-beam magneto-optical trap
(MOT) [18,19]. The atoms interact with a pulsed, far-
detuned optical standing wave which is created by retrore-
flecting the light from a 150 mW(slave) diode laser which is
injection locked to a lower power(master) diode laser. The
output of the master laser may be tuned over a range of about
4 GHz relative to the 6S1/2sF=4d→6P3/2sF8=5d transition
of the cesiumD2 line. The detuning of the laser from this
transition is denotedd. The frequency of the kicking laser is
monitored by observing the spectrum of its beat signal with
the trapping laser.

The standing wave has a horizontal orientation rather than
the vertical orientation used in the quantum accelerator ex-
periments of Refs.[12,13]. It is pulsed by optically switching
the laser light using an acousto-optic modulator(AOM). The
amplitude of the AOM’s driving signal is controlled by a
programmable pulse generator(PPG) to achieve the desired
pulse train shape. For amplitude noise experiments, the
AOM’s response to the amplitude of its driving signal must

first be calibrated, since the pulse heights need to be uni-
formly distributed. The PPG consists of a random access
memory(RAM) chip which can store up to 216 12-bit words
representing samples of the pulse train. On receipt of a gate
pulse, the samples in the RAM are read into a digital-to-
analog converter at 25 MHz, corresponding to a 40 ns tem-
poral resolution for the pulse trains. A given realization of a
noisy pulse train(for amplitude or period noise) is created by
using computer-generated pseudorandom numbers to give
fluctuations about the mean amplitude or mean pulse posi-
tion in a standard pulse train. The noisy pulse train is then
uploaded to the PPG.

In a typical experimental run, the cooled atoms were re-
leased from the MOT and subjected to 20 standing wave
pulses, and then allowed to expand for an additional free
drift time in order to resolve the atomic momenta. The mo-
mentum resolution of our experiments for a 12 ms expansion
time is 0.29 two-photon recoils. After free expansion, the
atoms were subjected to optical molasses, effectively freez-
ing them in place, and a fluoresence image of their spatial
distribution was taken. The timing of the experiment was
controlled by sequencing software running on theRTLINUX

operating system kernel giving worst case timing errors of 30
µs [20], or 0.25% of the atomic time of flight.

Some experimental imperfections have a systematic effect
on our data and need to be taken into account in simulations
in order for meaningful comparisons to be made. First, when
the standing wave is on, individual atoms experience differ-
ing potentials depending on their radial position in the beam,
due to the Gaussian mode shape of the beam. This can affect
the experimental resolution of the multipeaked “diffusion
resonance” structure in the mean energy which occurs be-
tween primary quantum resonances, as this structure is
strongly dependent on the exact potential strength
[14,20,21]. However, it is not so critical to the observation of
quantum resonance peaks, due to the very resistance to varia-
tions in amplitude discussed in this paper. Nonetheless, this
spread in kicking strengths is taken into account in our simu-
lations. Second, in order to achieve a spontaneous emission
rate sufficiently high to make the quantum resonance peaks
prominent and amenable to study, a detuning from resonance
of about 500 MHz was used in our experiments. This value
of the detuning is large enough to ensure the conditiond
@V (whereV is the average atomic Rabi frequency taken
over the different hyperfine transitions) which is assumed in
the derivation of the AOKR Hamiltonian[22]. However, the
difference in detuning between theF=4 ground state and
each of the hyperfine excited statesF8=3, 4, 5, as well as the
difference in coupling strengths between magnetic substates,
leads again to a spread in kicking strengths(as detailed in
Ref. [14]). Once again, this effect is allowed for in our simu-
lations.

We also note that the application of amplitude and period
noise to our pulse trains inherently creates random scatter in
our data since each different noise realization gives rise to a
different mean energy. Thus, meaningful results may be ob-
tained only by averaging the energy from a number of sepa-
rate experiments with different noise realizations. For experi-
ments where the noise is solely a result of spontaneous
emission events, the statistics are already excellent, since the
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mean energy is calculated for a large number of individual
atoms. This is not true for pulse train noise experiments
which affect correlations over the entire atomic ensemble.
Each point on our curves represents an average of 12 sepa-
rate experiments(except in the zero-noise case, where three
repetitions was found to be sufficient). This number of rep-
etitions reduces the error to a size such that any quantum
resonance structure may be confidently identified.

V. EXPERIMENTAL AND SIMULATION RESULTS

We now present experimental measurements of the quan-

tum resonance peaks atk–=2p and 4p, in the presence of
noise applied to the amplitude or period of the kicking pulse
train (Figs. 1 and 2). Simulations are performed using the
Monte Carlo wave function method as has previously been
discussed in Refs.[14,21]. For comparison with simulations,
the value ofT corresponding to quantum resonance(that is,

k–=2p or 4p) is taken to be the experimental position of the
resonance peak. This gives values ofTres,1=61 ms and
Tres,2=121.5ms which are within 1% of the theoretical val-
ues of 2p /8vr =60.5ms and 4p /8vr =121ms, respectively.
The experimental resolution is limited by the spacing be-
tween consecutive values ofT (i.e., 0.5 µs). However, the
exact position of the quantum resonances is not important to
the results presented here which are concerned with the over-
all shape of the resonance peaks.

In this section, we measure the mean energy of the atomic
ensemble, which is given byE=kp̂2l /2s2"kLd2. This quantity
is referred to as the energy in two photon-recoil units. The
height of the quantum resonance for a given number of kicks

n was found in Ref.[18] to be Eres=s1/4dsk / k–d2n. In the
presence of amplitude noise, additional diffusive energy is

gained which, forLA=2, is of sizesk2/12k–2dn [23]. Thus, for
maximal amplitude noise, the height of the quantum reso-
nance energy peak is predicted to be

Eres=
1

3Sk

k–
D2

n. s7d

We use this equation to determine the value ofk to be used
in our amplitude noise simulations. Although this method
systematically underestimates the true value ofk (since
small populations of resonant atoms with high momenta can-
not be detected experimentally) it avoids the many system-
atic errors that arise whenk is estimated from power mea-
surements of the kicking beam outside the MOT chamber.
The values ofk gained from this equation are consistent with
those estimated from experimental parameters.

If period noise is being applied instead, simulations show
that the energy around the second quantum resonance satu-
rates at the quasilinear value for the highest noise level,
which is given by multiplying the quasilinear energy growth

k2/4k–2 [24] by the number of kicks to give

Eq.l. =
1

4Sk

k–
D2

n. s8d

Thus, having measured the height of the resonance for an

amplitude noise level of 2, we can solve Eq.(7) for k / k–

which gives 3.77±0.04. Similarly, having calculated the ex-
perimental quasilinear energy of 66±0.7 from the line fitted

in Fig. 2(b), we can solve Eq.(8) for k / k– which gives
3.63±0.03. Given the different systematic errors which arise
for amplitude and period noise calculations ofk and the
possibility of laser power drift between experimental runs,

FIG. 1. Measured energies(a) and (b) near the first and second
primary quantum resonances and associated simulation results(c)

and (d) for various levels of amplitude noise. We have takenk / k–

=3.77, as calculated from Eq.(7) and the spontaneous emission rate
used for simulations is 2.5%. The dotted line represents the no-
noise case; circles,LA=0.50; diamonds,LA =1.0; triangles,LA

=1.50; and squares,LA=2.0. Sample error bars are shown on the
second point for each curve.
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we do not expect perfect agreement between the two values.
Using the values ofk gained from Eqs.(7) and (8) in our
simulations we find good quantitative agreement between ex-
perimental and simulation results. We note that period noise
experiments allowk to be determined more accurately be-
cause the quantum resonance behavior is destroyed and
therefore the wings of the momentum distributions are not
populated. This leads to more accurate values for the experi-
mentally measured final energies.

Oncek has been calculated from the measured energies,
the spontaneous emission rate per pulse may be deduced by

calculating the Rabi frequencyV from Eqs.(2) and (3) and
using the standard expression to find the probability of spon-
taneous emission[25]. Measured and simulated energies are

plotted againstk– [which may also be thought of as the scaled
kicking period of the kicked rotor system(as in[18]) where

k–=2p corresponds to the kicking period at which the first
quantum resonance peak occurs].

A. Amplitude noise

In our experiments, we measured energies at pulsing pe-
riods close to quantum resonance for the first and second

quantum resonances, which occur atk–=2p and 4p, respec-
tively. Amplitude noise was applied at levels ofLA=0.5, 1,
1.5, and 2. Figure 1 shows the results obtained. We see that
the resonance peak increases in height and that the reduced
energy level to either side of resonance rises with increasing
noise level. However, somewhat surprisingly, the resonance
peak still remains prominent compared to the surrounding
energies, even for the highest possible level of amplitude
noise, although it becomes less well defined. We note that
there is essentially no difference between the behavior seen
at the first and second quantum resonances apart from the
fact that the energies are systematically lower for the second
quantum resonance in experiments. This is due, in part, to
the fact that the atomic cloud expands to a larger size during
kicking for the second quantum resonance as compared with
the first. This leads to a lower average kicking strength being
experienced by the atoms(a feature not included in our
simulations). Additionally, the total expansion time for the
atoms, including kicking, is constant, which means that for
the sweeps over the second quantum resonance the atoms
have less free expansion time after kicking than at the first
quantum resonance. This also leads to a systematic underes-
timation of the energy.

That the dynamics at quantum resonance itself is robust
against amplitude noise is not surprising. The resonance
arises because the time between pulses matches the condition
for unity quantum phase accumulation after free evolution.
The introduction of amplitude noise does not affect this fun-
damental resonance criterion. Seen from the point of view of
atom optics, the resonant period is the Talbot time(corre-

sponding tok–=4p) [8,9]. While the amplitude of the pulses
applied affects the number of atoms coupled into higher mo-
mentum classes, it does not affect the period-dependent Tal-
bot effect, which gives rise to the characteristic energy
growth seen at resonance.

The most surprising feature in these experiments is the
survival of low energy levels to either side of the resonance.
Persistence of quantum dynamical localization is the most
obvious explanation for the sharp decrease in energy to ei-
ther side of quantum resonance. However the results of Steck
et al. [23] (which were performed far from quantum reso-

nance atk–=2.08) demonstrated that dynamical localization is
destroyed by high levels(corresponding toLA=2) of ampli-
tude noise. In Sec. VI, we will employ the recently devel-
opede classical description of the quantum resonance peak
to explain this persistence of localization.

FIG. 2. Measured energies(a) and (b) near the first and second
primary quantum resonances and associated simulation results(c)

and (d) for various levels of period noise. We have takenk / k–

=3.61, as calculated from Eq.(8) and the spontaneous emission rate
used for simulations is 2.5%. The dotted line represents the no-
noise case; circles,LP=0.01; diamonds,LP=0.02; triangles,LP

=0.05; and squares,LP=0.1. Sample error bars are shown on the
second point for each curve. In(b), a straight line was fitted to the
energies in the highest noise case. It gives the quasilinear energy as
66±0.7.
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We see that the experimentally measured resonance peaks
are broader than those predicted by simulations. The broad-
ening may result from a higher than expected spontaneous
emission rate, resulting from a small amount of leaked mo-
lasses light which is inevitably present during the kicking
cycle. Additionally, phase jitter on the optical standing wave
can be caused by frequency instability of the kicking laser
and mechanical vibrations of the retroreflecting mirror. Such
phase noise is equivalent to a constant level of period noise
and would also lead to broadening of the resonance. It is
hard to quantify the amount of phase noise present, although
the clear visibility of the resonances when no extra period
noise is applied(see dotted line, Fig. 2) suggests that it is
small in amplitude. However, these uncertainties do not af-
fect the observation of the qualitative shape of the resonance
structure under the application of amplitude noise and, in
particular, the puzzling robustness of the low energy levels to
either side of resonance.

B. Period noise

For comparison, we also present results showing the ef-
fect of period noise on the first two primary quantum reso-
nance peaks. It may be seen that even small amounts of this
type of noise have a large effect on the near resonant dynam-
ics. Figure 2 shows the results for noise levels of 0.01, 0.02,
0.05, and 0.1. The first primary quantum resonance peak is
found to be very sensitive to small deviations from strict
periodicity of the pulse train. Noise levels of 0.05 and 0.1
completely wash out the peak, regaining the flat energy vs
kicking-period curve that we expect in the case of zero kick-
to-kick correlations. The effect of period noise on the second
primary quantum resonance is similar, although it is even
more sensitive with an 0.02 noise level completely destroy-
ing the peak. At higher noise levels, the mean energy tends
toward the zero-correlation energy level.

The greater effect of period noise on the second quantum
resonance is due to the greater absolute variation possible in
the free evolution period between pulses, since the kicking
period in this case is twice that of the first quantum reso-
nance. This has been verified by our group in separate ex-
periments where the absolute variation of the kicking period
was held constant[26]. Such noise was found to have a more
uniform effect on structures in the mean energy. Sensitivity
of the dynamics near quantum resonance to noise applied to
the kicking period is not surprising, given the precise depen-
dence of the resonance phenomenon on the pulse timing. The
quantum phase accumulated between kicks is randomized
and the kick-to-kick correlations destroyed. However, the
stark contrast between the sensitivity of the near resonant
dips in energy to amplitude and period noise requires further
elucidation, which we now provide by looking at the corre-
lations which lead to quantum resonance at early times and
the e classical dynamics of the kicked rotor near quantum
resonance.

VI. REAPPEARANCE OF STABLE DYNAMICS CLOSE TO
QUANTUM RESONANCE

We now seek to explain the surprising resilience of the
structure near quantum resonance to the application of am-

plitude noise. Since the effect of amplitude noise is the same

for the resonance peaks atk–=2p and 4p we consider only

the resonance peak aboutk–=2p, although the arguments eas-
ily generalize to other quantum resonance peaks occurring at
multiples of this value. We also limit our attention to the case
where there is no spontaneous emission, as this form of de-
coherence, at the levels present in these experiments, merely
broadens the resonance peak and does not affect its qualita-
tive behavior in the presence of amplitude noise.

The stability of the quantum resonance structure in the
late time energy(as measured in our experiments) may be
explained by appealing to thee classical mechanics formu-
lated by Wimbergeret al. [10,18,27]. In this description of
the kicked rotor dynamics, a fictitious Planck’s constant is
introduced which is referenced to zero exactly at quantum
resonance. Thus, even though the quantum resonance peak is
a purely quantum mechanical effect, its behavior may be
well described by a(fictitious) classical map near to
resonance.

Before considering this picture, however, we will look at
the resonances found in the early time classical and quantum
energy growth rates of the kicked rotor which provide simi-

lar insight over a wider range of values fork–. The classical
rates were first derived by Rechester and White[24] and
their work was extended to the quantum kicked rotor by
Shepelyansky[28]. These expressions for the early time clas-
sical and quantum energy growth rateD have the advantage
that they hold for any pulsing period and not just for those
within an e neighborhood of the quantum resonance period.
Figure 3(a) plots the early time energy growth rateD for the
classical and quantum dynamics against the effective

Planck’s constantk–. For sufficiently large values ofk / k– the
energy growth rate after five kicks obeys the approximate
expression[28]

D <
1

2Sk

k–
D2S1

2
− J2sKd − J1

2sKd + J2
2sKd + J3

2sKdD , s9d

where theJn are Bessel functions andK=k for the classical

case andK=kq=2k sinsk–/2d / k– for the quantum case. The
energy growth rate is expressed in the same energy units
used in Ref.[14]. This formula was generalized by Stecket
al. [23] to the case where amplitude noise is present in the
system, giving

D <
k2 + varsdKd

4k–2
+

k2

2k–2
f− J2sKd − J1

2sKd + J2
2sKd + J3

2sKdg ,

s10d

whereK is defined as before,dK is a random variable giving
the fluctuation inK at each kick, varsdKd is the variance of
the noise distributionPsdKd, and

JnsKd: =E
−`

`

PsdKdJnsK + dKddsdKd. s11d

The new functionsJn are averages of the normal Bessel
functions over the noise distribution. We note that Refs.
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[23,28] deal with diffusion of the momentumr, whereas we

present our results in terms ofr / k–. Hence, when comparing
our results for energies or energy growth rates with the for-

mulas in the aforementioned references, division byk–2 is
necessary.

Of particular interest is the behavior neark–=0. We note
that using Shepelyansky’s formula in this regime can be
problematic because, in the fully scaled system, the width of

the initial atomic momentum distribution scales withk– and
may become small enough that Shepelyansky’s assumption

of a uniform initial momentum distribution is no longer valid
[29]. Assuming, however, that a broad initial momentum dis-
tribution may be maintained in the classical limit, we see that

a peak exists atk–=0 for both the classical and quantum dy-
namics and the classical and quantum curves match perfectly

until k–,0.5. More importantly, a reduced energy region at

k–<0.5 remains even for the highest level of amplitude noise,

as seen in Fig. 3(a). At larger values ofk–, the oscillations in
the classical growth rate are destroyed by noise. However, in

the quantum case, the robust peak structure seen neark–=0

repeats itself at multiples ofk–=2p. The survival of the struc-

ture neark–=0 is attributable to the near integrability of the

dynamics(classical and quantum) for small values ofk–. We
recall that in the scaling used for these experiments the ratio

k / k– is kept constant wherek is the classical stochasticity

parameter of the system. Thus we havek→0 as k–→0. At

small values ofk– and thusk, since the perturbation from an
unkicked rotor is quite small, the system is near integrable
(i.e., the dynamics are stable) and the effect of fluctuations in
the perturbation(amplitude noise) is far less compared with

the effect at higherk / k– where the system is chaotic. Figure
3(a) shows that, in the quantum case, this stability reappears
near quantum resonance, a fact that may be explained by
inspection of Eqs.(10) and (11). These equations show that
the destruction of quantum correlations due to amplitude
noise occurs due to the stochastic variation of the argument
kq of the Bessel functions. Ifkq is small then so is the abso-
lute variation ofkq inside the Bessel functions due to ampli-
tude noise and, therefore, there is little damage to the quan-
tum correlations themselves. Sincekq→0 at quantum

resonance, the same behavior seen neark–=0 reappears at

integral multiples ofk–=2p.
The formula for the early time energy growth rateD also

provides us with predictions of the qualitative behavior of
the late time energy[14]. However, if we limit our attention

to the energies fork–<2pm wherem is a positive integer, the
e classical model of Wimbergeret al. may be employed to
calculate the energies around the quantum resonance after

larger numbers of kicks. Ife=2pm−k– is the (small) differ-

ence betweenk– and a resonant point, the dynamics of the
AOKR is well approximated by the map[18]

rn+1 = rn + k̃n sinfn+1, s12ad

fn+1 = fn + sgnsedrn + pl + k–b mod 2p, s12bd

where k̃n= ueukn, kn=sk / k–dRA,n [12], rn and fn are the mo-
mentum and position at kickn, respectively,r0= ueun0 for n0

a positive integer, ande=k–−2pm!1 for positive integersm.
In this paper,l is set to 1 without loss of generality as in
Refs.[18,27]. In the reformulated dynamics,e plays the part
of Planck’s constant ande→0 may be considered to be a
quasiclassical limit.

Figure 3(b) shows the energy peak produced by thee
classical dynamics for various amplitude noise levels. We see

FIG. 3. Analytical predictions of the effect of amplitude noise

on the quantum resonance peak at 2p for k / k–=3.7. (a) shows the
behavior of the early energy growth rateD [as given by Eq.(10)] of

the classical and quantum kicked rotor as a function ofk– for am-
plitude noise levels ofLA=1 and 2. Dashed and dotted lines are the
classical rates for amplitude noise levels of 1 and 2, respectively.
Solid and dash-dotted lines are the quantum rates forLA=1 and 2,
respectively.(b) shows the resonant peak produced by 20 iterations

of Eq. (12) aboutk–=2p with LA=0 (circles), 0.5 (solid line), 1.0
(dash-dotted line), 1.5 (dashed line), and 2.0(dotted line). Each
point is an average of 10 different noise realizations. The letters
A−C indicate values ofe as referenced from Fig. 4.
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that even the maximum noise level of 2 does not destroy the
peak, a finding that agrees with the experimental and simu-
lation results presented in the previous section. Wimbergeret
al. have derived a scaling law for the ratio of the mean en-
ergy at a certain value ofe to the on-resonant energy. This
ratio is a function ofe, the kicking strengthk / k–, and the kick
number [18,27]. The scaling law reproduces the quantum
resonance peak, and its form is found to arise from the
changes in thee classical phase space ase is varied andk / k–

is held constant. These changes may be seen in Fig. 4. The
first row shows thee classical phase space for increasinge
and no amplitude noise. For the relatively unperturbed sys-
tem which exists at very low values ofe (say e,0.001),
lines of constant momentum dominate the phase space[see
Fig. 4(a)].

We now consider the near resonant mechanics when zero
noise is present, so thatkn=k=constant for alln. In this case,
following Wimberger et al., we may calculate the kinetic
energyEn=e−2krn

2/2l by neglecting terms of ordere in Eq.
(12b) and iterating Eqs.(12a) and(12b) followed by averag-
ing overf0 andb. Iterating Eq.(12) in the limit of vanishing
e, and considering for simplicity only the case wheree.0
and r0=0, we find the momentum after thenth kick to
be [27]

rn < eko
s=0

n−1

sinff0 + ps1 + 2bdsg, s13d

whence the mean energy may be calculated as

En <
k2

2K o
s,s8=0

n−1

sinff0 + ps1 + 2bdsg

3sinff0 + ps1 + 2bds8gL , s14d

where the average on the right-hand side RHS is taken over
all values off0.

For k–=2p (as in Fig. 4) the resonant value of quasimo-
mentum isb=0.5 [10] (corresponding to the liner=2p in
the phase space figures). Substitution of this value ofb into
Eq. (14) followed by averaging over a uniform distribution
for f0 gives En<sk2/2dn2 (this expression is exact whene
=0 — that is, ballistic growth of energy occurs at exact
quantum resonance forb=0.5 — and the mean energy of the
atomic ensemble(i.e., averaging overb) is raised signifi-
cantly ase→0 (in fact it grows linearly with kick number
[27]). Thus, the uniquely quantum energy peak found at in-
teger multiples ofk–=2p may also be explained by aclassi-
cal resonance of thee classical dynamics which is valid in
this regime.

For larger values ofe, the phase space of the system is
significantly distorted and the approximate expression in Eq.
(13) is no longer valid. However, two facts in particular give
a qualitative explanation for the decline in mean energy
away from exact resonance: First, the most distorted area of
phase space is that aroundr=2p, that is, the region respon-
sible for ballistic growth for vanishinge [18]. Thus the num-
ber of trajectories giving ballistic growth is drastically less-
ened for e.0. Second, although the phase space region
responsible for ballistic energy growth is warped, the struc-
tures which prevent stochastic energy growth(Kolmogorov-
Arnold-Moser tori) remain fore.0 and so the full quasilin-
ear rate of energy growth is not attained. These two facts
taken together give a qualitative explanation for the falloff in
mean energy ase is increased, as seen in Fig. 3(b).

This qualitative explanation of the structure near quantum
resonance also holds in the case where maximal amplitude
noise is applied to the system, as seen in the second row of
Fig. 4. At exact quantum resonancese=0d ballistic motion
still occurs even in the presence of amplitude noise. For
e.0, the phase space is distorted as before and some invari-
ant curves are destroyed by the applied noise. However, even
for e=0.04[Fig. 4(f)], the phase space has not become com-
pletely stochastic and so we see the same quantum resonance
structure as in the no-noise case, albeit with a lower peak-to-
valley energy ratio.

FIG. 4. Phase space portraits for thee classi-

cal standard map fork–=2p and k=3.7. The fig-
ures in the first row(a), (b), and (c) are for an
amplitude noise level of 0 and for values ofe of
0.001, 0.02, and 0.04, respectively. The second
row (d), (e), and (f) shows thee classical phase
space for an amplitude noise level of 2 and the

same values ofe. In Fig. 3(b), the values ofk–

corresponding toe=0.001, 0.02, and 0.04 are la-
beledA, B, andC, respectively.
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The persistence of the quantum resonance structure in the
presence of amplitude noise may now be seen to be due to
the reappearance of the quasiclassical dynamics which oc-

curs at values ofk– close to the resonance value, and far from
the actual classical limit. Thee classical description which is
valid in this regime is marked by a return to complete inte-
grability exactly at quantum resonance. By contrast, the ex-
treme sensitivity of the resonant peak to even small amounts
of period noise is precisely due to the sensitivity of this

approximation to the exact value ofk– (and thus the pulse
timing). While similar arguments to those used for amplitude
noise might suggest that the resonance peak should be robust
to period noise too, it is the very reappearance of the stable
dynamics which is actually ruined by this type of noise. If
the mean deviation from periodicity is of the order of the
width of the quantum resonance peak, the suppression of
energy growth to either side of the peak is destroyed, and the
final energy approaches the zero correlation limit for any
value of the kicking period. Comparison with the resonance
seen in the early energy growth rates in the actual classical
limit [Fig. 3(a)] shows that the behavior of the quantum reso-
nance in the presence of amplitude noise is qualitatively
identical to that of the classical resonance. Thus, although
the e classical description of quantum resonance employs a
“fictitious” classical dynamics in which the effective
Planck’s constant is still far from 0, the quantum resonance
peak may be said to mark a reappearance of classical stabil-
ity in the kicked rotor dynamics far from the classical limit.
The experimental observation of the robustness of the quan-

tum resonance peak provides an additional test of the validity
of the e classical model for the AOKR.

VII. CONCLUSION

We have presented experimental results demonstrating
that the quantum resonance peaks observed in atom optics
kicked rotor experiments are surprisingly robust to noise ap-
plied to the kicking amplitude, and that quantum resonance
peaks are still experimentally detectable even at the maxi-
mum possible noise level. By contrast, the application of
even small amounts of noise to the kicking period is suffi-
cient to completely destroy the resonant peak and return the
behavior of the system to the zero-correlation limit. We have
shown that the stability of the resonant dynamics in the pres-
ence of amplitude noise is reproduced by thee classical dy-
namics of Wimbergeret al.Viewed in light of this theoretical
treatment, the resilience of the quantum resonance peak to
amplitude noise is due to the reappearance of near integrable
e classical dynamics near quantum resonance, the behavior
of which is analogous(although not identical) to that of the

kicked rotor in the actual classical limit ofk–→0.
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